Multipass greedy coloring of simple uniform hypergraphs
نویسنده
چکیده
Let m∗(n) be the minimum number of edges in an n-uniform simple hypergraph that is not two colorable. We prove that m∗(n) = Ω(4n/ ln(n)). Our result generalizes to r-coloring of b-simple uniform hypergraphs. For fixed r and b we prove that a maximum vertex degree in b-simple n-uniform hypergraph that is not r-colorable must be Ω(rn/ ln(n)). By trimming arguments it implies that every such graph has Ω((rn/ ln(n))b+1/b) edges. For any fixed r > 2 our techniques yield also a lower bound Ω(rn/ ln(n)) for van der Waerden numbers W (n, r).
منابع مشابه
Greedy colorings of uniform hypergraphs
We give a very short proof of an Erdős conjecture that the number of edges in a non-2-colorable n-uniform hypergraph is at least f(n)2, where f(n) goes to infinity. Originally it was solved by József Beck in 1977, showing that f(n) at least c log n. With an ingenious recoloring idea he later proved that f(n) ≥ cn. Here we prove a weaker bound on f(n), namely f(n) ≥ cn. Instead of recoloring a r...
متن کاملUncolorable Mixed Hypergraphs
A mixed hypergraph H = (X; A; E) consists of the vertex set X and two families of subsets: the family E of edges and the family A of co-edges. In a coloring every edge E 2 E has at least two vertices of diierent colors, while every co-edge A 2 A has at least two vertices of the same color. The largest (smallest) number of colors for which there exists a coloring of a mixed hypergraph H using al...
متن کاملOn the Chromatic Index of Random Uniform Hypergraphs
Let H(n,N), where k ≥ 2, be a random hypergraph on the vertex set [n] = {1, 2, . . . , n} with N edges drawn independently with replacement from all subsets of [n] of size k. For d̄ = kN/n and any ε > 0 we show that if k = o(ln(d̄/ lnn)) and k = o(ln(n/ ln d̄)), then with probability 1−o(1) a random greedy algorithm produces a proper edge-colouring of H(n,N) with at most d̄(1+ε) colours. This yield...
متن کاملAdapted List Coloring of Graphs and Hypergraphs
We introduce and study adapted list coloring of graphs and hypergraphs. This is a generalization of ordinary list coloring and adapted coloring, and has more applications than these. We prove that the upper bounds on the adaptable choosability of graphs and uniform hypergraphs in terms of maximum degree are sufficiently stronger than those on the ordinary choosability, while the bounds in terms...
متن کاملApproximate coloring of uniform
We consider an algorithmic problem of coloring r-uniform hypergraphs. The problem of nding the exact value of the chromatic number of a hypergraph is known to be NP -hard, so we discuss approximate solutions to it. Using a simple construction and known results on hardness of graph coloring, we show that for any r 3 it is impossible to approximate in polynomial time the chromatic number of r-uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 48 شماره
صفحات -
تاریخ انتشار 2016